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Electron Cascades in Sensors for Optical Detection of Ionizing 
Radiation 
 
Richard A. London, Mark E. Lowry, Stephen P. Vernon, and Richard E. Stewart 
 
Abstract 
 
A new class of high-speed detectors, called RadOptic detectors, measures ionizing 
radiation incident on a transparent semiconductor by sensing changes in the refractive 
index with an optical probe beam.  We describe the role of radiation-initiated electron 
cascades in setting the sensitivity and the spatial and temporal resolution of RadOptic 
detectors. We model electron cascades with both analytical and Monte Carlo 
computational methods. We find that the timescale for the development of an electron 
cascade is less than of order 100 fs and is not expected to affect the time response of a 
detector.  The characteristic size of the electron cloud is typically less than 2 µm, 
enabling high spatial resolution in imaging systems.  The electron-hole pair density 
created by single x-rays is much smaller than the saturation density and therefore single 
events should not saturate the detector.   
 
I.  INTRODUCTION 
 
Conventional electronic radiation detectors collect the charge generated by the interaction 
of the radiation with a sensor medium, convert the charge to an electronic signal, and 
then transmit the signal to an electronic recording device.  The processes of collection, 
amplification, and transmission smear the signal thereby limiting the temporal response 
of state-of-the-art electronic detection systems to tens of ps.   
 
A new class of sensor, called RadOptic sensors, overcomes these limitations by using 
light to detect radiation ionization in place. Ionization of the sensor material, typically a 
II–VI or a III–V semiconductor alloy, produces a change in the optical refractive index 
that in turn produces a phase modulation of an optical probe beam (Lowry, et al. 2004, 
Vernon, et al. 2012). The recording of the probe beam provides the final step in the 
detection of the initial radiation. Since no net charge is produced and no charge transport 
is required, RadOptic sensors are inherently high-bandwidth, with the sensor temporal 
response determined by the charge carrier creation and relaxation times. We mention 
several other advantages that RadOptic sensors have over conventional detectors. 1) They 
do not suffer from space charge limitations on dynamic range. 2) The signal level 
depends upon the absorbed radiation fluence; thus shrinking the detector area does not 
reduce the signal level.  This spatial scaling behavior can enable high-resolution imaging. 
3) RadOptic systems can operate in very high radiation environments by using sensor 
materials insensitive to radiation damage and transmitting the output signals	  (i.e. coherent 
optical probe beams) to remote recorders.  Single channel, multiple channel, and imaging 
detectors can be built using RadOptic sensors. 
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II.  THE RADOPTIC EFFECT AND THE ROLE OF ELECTRON CASCADES 
 
RadOptic sensors operate by detecting radiation-induced phase shifts.  The phase shifts 
depend on changes in the index of refraction, δn(r,t), which in turn depend on the density 
of electron-hole pairs, ρ(r,t), created in the sensor material.  As discussed in the 
Appendix, detection sensitivity, temporal resolution, and spatial resolution of the 
detection system ultimately depend on δn(r,t) and therefore ρ(r,t).  
 
The time evolution of the RadOptic effect, namely the index change, δn(r,t), can be 
divided into three stages: 1) charge generation, 2) cooling, and 3) dissipation.  Charge 
generation is dominated by electron cascade and collisional processes for particle 
energies above 10 eV. Cooling takes the charges from energies of approximately 10 eV 
to energies just above the bandgap. Dissipation is controlled by charge diffusion and 
recombination.  Since δn is dominated by the population of charge states near the 
bandgap, the generation and cooling processes determine the rise time of the RadOptic 
effect.  Dissipation processes influence detection sensitivity, sensor fall-time and sensor  
recovery. It is important to determine the characteristic times for these processes. Cooling 
timescales range from a few hundred fs to a few ps (Gong 1990, Zhou 1990, Hohenester 
1993), while dissipation occurs on timescales ranging from 100 ps to a several ns 
(Weiner, 1984).  The charge generation process and associated timescales are a major 
focus of this paper. 
 
The spatial distribution of the pair density is important in determining the sensitivity and 
saturation of a sensor.  The refractive index is generally proportional to ρ(r,t) at low pair 
density and saturates at high pair density, of order 1018 cm-3 in GaAs (Park, 1988).  A 
quantitative discussion of the phase shift and saturation effects experienced by an optical 
beam probing a sensor region exposed to x-rays is presented in the Appendix.  Therein it 
is shown that the phase shift is due to the additive effect of a large number of phase 
objects, each created by the absorption of a single x-ray.  In the low x-ray fluence regime, 
these phase objects remain separated, while at high fluence they overlap.  It is important 
to determine the value of the local charge density due to single events compared to the 
index saturation value to quantify the sensitivity and linearity of a RadOptic detector.   
 
In addition, the spatial dependence of the charge distribution is important for imaging 
sensors using the RadOptic effect to record the phase replica of an x-ray image (Baker 
2012, Vernon 2012, Stewart 2013). The size of the electron-hole cloud produced by a 
primary photoelectron from a high-energy x-ray limits the spatial resolution of the replica 
pattern.   
 
We now discuss the underlying physical mechanisms of the generation of electron-hole 
pairs in RadOptic sensors. Each energetic charged particle or photon that strikes a 
semiconductor material generates a large number of ionizations and thereby electron-hole 
pairs, which we call “charges” for short.  This occurs through an ionization cascade 
process.  For x-rays, the cascade begins with the ionization of an atom, creating a 
photoelectron, followed by either a fluorescent photon or one, or several, Auger 
electrons. Fluorescent photons are often reabsorbed, creating further photo and Auger 
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electrons.  The photo and Auger electrons then slow down, primarily by collisional 
ionization, creating “secondary electrons” that in turn can generate more charges.  This 
cascade process continues until the charges either leave the material or scatter down to 
sufficiently low energy that that they can no longer ionize the material.  It is well known 
that the final number of charges Ne created before recombination is proportional to the 
energy of the incident particle, Ex: Ne = Ex/ε, where the constant ε is known as the pair-
creation energy.  For semiconductors and insulators, ε is typically 2-3 times the bandgap 
energy (Klein, 1968).  Bertuccio (2002) have found a value of ε = 4.18 eV for GaAs. The 
result of the electron cascade is the production of a certain number of final charges for 
each incident particle or x-ray. At this point, the RadOptic optical probe senses the charge 
density.  The electrons then recombine with the holes, generally on a longer timescale 
than the cascade or detection process.   
	  
We are motivated to study the space and time dependence of electron cascades created by 
single particles.  Previous work has considered cascades in diamond applied to problems 
of material damage from high intensity short pulse x-ray sources (Ziaja, 2005).  Here we 
consider similar cascades in gallium arsenide, a prime candidate material for RadOptic 
sensors. Since the interaction of x-rays with the sensor material is dominated by photo-
ionization (elastic and inelastic scattering cross-sections are 10-2 to 10-3 times smaller), 
and photo-ionization produces electrons with energies somewhat less than the x-ray 
energy, we consider the cascades resulting from electrons in the 5-40 keV energy range. 
This broad range is important for applications such as detection of x-rays produced by 
laser generated back lighters (Blue, 2005, Kalantar, 2005), x-ray emission from capsule 
implosions in inertial confinement fusion (Kyrala, 2010), and fast secondary electron 
detection for neutron and gamma ray converters to detect fusion reaction products 
(Malone, 2010). 	  
	  
 
III.  ANALYTIC MODEL FOR ELECTRON CASCADE TIME RESPONSE. 
 
The time scale for the full development of an electron cascade can be estimated from the 
energy dependent stopping power, S(E), defined as the average energy loss per unit 
length of travel of a particle in matter, usually expressed in units of eV/Å.  The 
approximation of equating the electron cascade time to the slowing down time assumes 
that the primary electron loses energy in many steps, with each step involving a relatively 
small energy loss by creating secondary electrons.  This is usually valid, since we are 
considering electron energies of order 10 keV, whereas the characteristic energy transfer 
per collision is of order the binding energy of electrons, which is approximately 10 eV.  
The secondary electrons are assumed to create further ionizations and lose their energy 
essentially instantaneously.  Thus, the cascade time is calculated as the slowing down 
time of the primary electron.  Given S(E), we calculate the slowing down time as: 
 

𝑡! =
1

𝑣(𝐸)𝑆 𝐸

!!

!!
𝑑𝐸, 

where Ei and Ef are the initial and final energies of the electron and v is the electron  
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velocity as it slows down. We use data for electron slowing down in GaAs for energies 
between 10 eV and 10 keV from Joy (1995).  We add data for 10 < E ≤ 30 keV by scaling 
the values for Ge given by Powell (2012) by the ratio of the 10 keV stopping power for 
GaAs to that for Ge.  The calculated time to slow down to 10 eV from various initial 
energies in GaAs is shown in Figure 1.  We see that the slowing down time increases 
rapidly with initial electron energy.  This justifies the use of the slowing-down time to 
calculate the cascade time, since secondary electrons, being of lower energy, slow down 
much faster than primary electrons.  The slowing down time ranges from 3 fs for 1 keV 
electrons up to 70 fs for 30 keV electrons.  In all cases of interest the slowing down time 
is less than 100 fs. 
 
IV.  MONTE CARLO CALCULATIONS OF ELECTRON CASCADES. 
 
In order to obtain more accurate calculations of the electron cascade time and to address 
the spatial distribution of charge density, we have performed Monte Carlo calculations 
using the MCNP code (http://mcnp.lanl.gov).  This is a general-purpose code for 
simulating the transport of high-energy radiation within cold matter.  The treatment of 
electron transport is described in several publications (Hughes, 1996 and 2013).  It 
includes processes of atomic excitation and ionization, elastic scattering and 
bremsstrahlung.  Electrons at higher energies (> 1 keV) are treated with the condensed 
history method (Berger, 1963), while lower energy electrons are treated with the single-
event method.  Recent enhancements in the methods and cross section data provide good 
accuracy for electrons of energies as low as 10 eV. 
 
A.  Problem geometry 
 
We examine cascades initiated by electrons created inside the sensor material by photo- 
and/or Auger ionization.  The problem geometry is illustrated in Figure 2.  We assume a 
cylinder of material large enough that no electrons escape.  The electrons are launched in 
the +z direction at middle of the cylinder (r=0, z=0).  A large number (105 to 106) of 
electrons are launched, each with a different random number seeds in order to produce 
average distributions.  We then tabulate the space and time dependent energy deposition 
in specified bins.  
 
B.  Spatial dependence 
 
Figure 3 shows the spatial distribution of the final energy deposition in 0.05 by 0.05 µm 
spatial bins for electrons of 20-keV initial energy.  We see a sharply peaked distribution 
of dose about the position of the initial electron. The peak value of the dose is not 
physically meaningful, since the dose distribution is singular due to the specification of 
an infinitesimally small beam width.  The results of the Monte Carlo calculations are 
therefore dependent on the spatial bin size.  This anomaly at the source point can be 
avoided by considering cumulative doses moving out from the source.  
 
Figure 4 shows lineouts of the cumulative dose in r and z.  The cumulative dose in r is 
defined as the integral over all z and over r less than the specified value.  A similar 
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definition applies to the cumulative dose in z.  For this case of 20 keV initial electrons, 
75% of the energy is deposited in the forward direction (i.e. for z>0), with the rest 
deposited in the backward direction (z <0).   Half of the forward deposition occurs for z < 
0.46 µm, while 1/2 of the backward deposition occurs for z > -0.30 µm.  In the radial 
direction 1/2 of the energy is deposited for r < 0.67 µm.  This results in a characteristic 
volume for the energy deposition of 1.1 µm3.   
 
In order to obtain realistic results for the electron density, we must consider the physics 
of low energy electrons.  This is beyond the scope of MCNP, which does not follow 
electrons below 10 eV.  When an electron drops below this energy, or a process creates 
such a low energy electron, it is assumed to stop immediately, depositing its energy 
locally.  In reality, most of the electrons generated by an absorbed x-ray drop to such low 
energies very quickly and these low energy electrons are responsible for the refractive 
index change that is essential to the operation of the detector.  Therefore, we calculate the 
electron density from the energy deposition using the pair creation energy (ε=4.18 eV) 
discussed above.  An addition, we are only interested in the charge density due to a single 
primary electron at a time corresponding to the minimum feasible detector time 
resolution, of order 1 ps (Lowry, 2011, Bennett, 2011).  The low energy electrons (and 
holes) will travel some distance in this time.  Since collisions with the lattice are rapid, 
these electrons will move diffusively. Therefore, we consider the diffusion of charge 
between the initial cascade time modeled by the MCNP code (~ 50-100 fs) and the time 
corresponding to the detector resolution (~ 1 ps). Considering a point source, the 
diffusion length, or average distance an electron will move is:  <x> = √(Dt), where D is 
the diffusivity and t is the time.  Taking the room temperature mobility given by Beard et 
al. (2000) and the Einstein relation between diffusivity and mobility:  D = µkT/e, we find 
D=0.0169 µm2/ps.  Therefore the diffusion length is <x>  = 0.13 µm tps

1/2, where tps is 
time in ps.  To get the electron density at a specific time, we first calculate the energy 
deposition with MCNP on a fine grid, convert this to electron density and then smooth 
the density over the diffusion length.  This produces the electron density map at 1 ps 
shown in Figure 5.  The peak density is 2.1x1016 cm-3, and the size of the region where 
the density drops to 10% of the peak value is Δr=0.3 by Δz=0.5 µm.  
 
Monte Carlo calculations have been performed for primary electron energies ranging 
from 5 to 40 keV.  Results for the peak electron density and the positions containing ½ of 
the electrons in –z, +z and r directions are shown in Figure 6.  The peak density decreases 
monotonically with increasing initial energy, from 1.2x1017cm-3 at 5 keV to 1016 cm-3 at 
40 keV, while the lengths characterizing ½ of the electron number increase 
monotonically with energy.  In other words, the higher energy electrons deposit their 
energy over larger volumes and these volumes increase faster than the energy, so that the 
electron density/particle decreases with energy.  In all cases the peak electron density is 
less than the expected saturation density of 1018 cm-3.   In this case, Eq. A9 in the 
Appendix shows that the sensitivity parameter, κ, is independent of the radiation induced 
charge density.  Therefore we do not expect that single particle events will cause local 
saturation.  
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C.  Time dependence 
 
The time dependence of the development of the electron cascades has also been 
calculated in the Monte Carlo simulations. Figure 6 shows the charge generation rate 
versus time for incident electron energies ranging from 5 to 40 keV.  In all cases, we see 
a gradual rise in the generation rate to a maximum value, followed by a rapid drop until 
all of the incident energy has been converted to charge.  The initial rise is due to the 
increase in inelastic cross section with decreasing energy of the primary electron.  Figure 
8 shows the time for generating 90% of the final charge versus initial electron energy, 
together with the slowing down time presented in section 2.  We note that the cascade 
generation time grows somewhat faster than linearly with primary energy.  The Monte 
Carlo results agree with the analytical estimate to within 20%.  For energies less than 40 
keV, the generation time is less than 120 fs. The Monte Carlo results thus support the 
conclusions drawn above that the time to generate the charge responsible for the 
RadOptic effect is generally less than 100 fs and will therefore enable time resolutions of 
this order.   
 
V.  CONCLUSIONS.  
 
We have described the role of radiation initiated electron cascades in the operation of a 
new class of optically probed radiation “RadOptic” detectors. The space and time 
dependence of the electron cascades influence the sensitivity and the space and time 
resolution of such detectors.  An analytical model predicts cascade time scales between 1 
and 70 fs for electrons of energies between 0.1 and 30 keV in GaAs.  Detailed Monte 
Carlo simulations give similar timescales (within 20%) and extend the analytical results 
to 120 fs at 40 keV.   The Monte Carlo simulations predict characteristic spatial extents 
of the charge clouds created by electrons between 5 and 40 keV of 0.1 to 2.3 µm and 
charge densities ranging from 11 to 1 x 1016 cm-3.  The timescales for the development of 
the electron cascades, less than of order 100 fs, are generally less than the other times 
scales of the RadOptic process, namely the charge cooling timescale and the diffusion 
and recombination timescales.  Thus that the cascade process is fast and it is not expected 
affect the time response of RadOptic detectors.  The spatial scale of the electron clouds is 
small enough that it should allow better than 5-µm resolution in imaging applications.  
The electron-hole pair densities created by single x-rays are much smaller than the 
saturation density and therefore single events should not saturate the detectors.   
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APPENDIX: PHYSICS AND SATURATION OF THE RADOPTIC EFFECT 
 
The RadOptic effect relies upon a change in the refractive index similar to the optical 
nonlinearity described by Lee (1986) and Park (1988).  In this phenomenon an optical 
pump beam creates electron-hole pairs, which change the refractive index seen by a probe 
beam.  A thorough treatment of the optical index change in excited semiconductors is 
given by Banyai and Koch (1986).  We utilize a simpler, yet sufficiently accurate 
treatment for our application.  At low densities, the free electron contribution to the 
optical nonlinearity is proportional to the pair density (Said 1992).  To account for high-
density effects, we adopt the saturation expression of Park and Gibbs (1985) to 
modify Said’s formula and write the index change as: 

𝐴1         𝛿𝑛 = 𝜌𝜎 𝜆 𝑓 𝜌 , 
where ρ is the electron-hole pair density, λ is the wavelength of the probe, and σ(λ) is the 
low-density index change coefficient, which varies slowly with	  λ except very close to the 
bandgap. Typically σ(λ) is negative.  The saturation function is written as: 

(A2)     f (ρ) = 1
1+ ρ / ρsat

, 

where ρsat ~ 1018 cm-3.   
 
If the pair density is uniform throughout the volume interrogated by the probe beam, the 
single-pass phase shift is given by: 

(A3)      Δφ = 2πS
λ

δn,
 

where S is the path length of the probe.    
 
In the case of incident x-rays, the index change is generally thought to be non-uniform, 
since each x-ray creates a small volume of ionization localized around the point where it 
is absorbed.  Thus the net effect can be viewed as an ensemble of phase objects, as 
illustrated in Figure A1.  At high fluence the phase objects overlap, producing a fairly 
uniform index change, and the phase shift is given by Eqs. (A1-A3), where ρ is averaged 
over the probed region.   
 
At low incident fluence, the phase objects remain largely separated and the total phase 
shift is given by the additive effects of the many phase objects in the region probed by the 
optical beam.  In this limit we express the phase change as a linear superposition:  

(A4)     Δφ = Nxδφ,  
 

where Nx is the number of x-ray generated phase objects, and δφ  is the phase shift 
induced by a single object: 

(A5)     δφ = 2π s
λ

δn . 
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Here the index change averaged over the area of the optical probe beam, A, is 
approximated by 

(A6)     δn =
s2

A
δn .

 
We have assumed a cubic excitation volume of edge length s, and δn is the index change 
within this volume.  Then the object phase shift is 

(A7)     δφ = 2π
λ
s3

A
δn .

 
We see that the radiation induced object phase shift is proportional to the volume of the 
object, s3, as well as the index change within the object, nδ .  If we further assume that 
nδ can be described by the same formalism used in nonlinear optics, we can write:  

(𝐴6)          𝛿𝜙 =
2𝜋
𝜆
𝑠!

A 𝜌!"  𝜎 𝜆 𝑓 𝜌!" , 

where ρpo = Neh/s3 is the density of e-h pairs within the phase object and Neh = number of 
e-h pairs produced per absorbed x-ray.   Since the number of pairs is proportional to the 
x-ray photon energy, Neh=Ex/ε (Section 1), we can write the object phase shift as:  

(𝐴7)            𝛿𝜙 =
2𝜋
𝜆
𝐸!
εA   𝜎 𝜆 𝑓 𝜌!" . 

Finally we arrive at an expression for the phase shift due to the whole radiation pulse 
absorbed in the sensor that holds when the phase objects do not overlap and/or the 
density in each object remains much smaller than the saturation density (𝜌!" ≪ 𝜌!"#).  In 
this case we get the total phase shift by multiplying δφ by the number of phase objects: 

(𝐴8)          ∆𝜙 =   𝜅  𝐹!  , 

where κ is a sensitivity parameter:  

(𝐴9)          𝜅 =
2𝜋
𝜆𝜀 𝜎 𝜆 𝑓 𝜌!" , 

and Fx = NxEx/A is the absorbed x-ray energy fluence within the probe beam.   
 

We note that κ	   depends on ε and the probe wavelength and has a saturation function 
determined by the pair density in each phase object. Further, we see that the phase signal 
depends upon the absorbed fluence; this behavior is very different from conventional 
detectors in that shrinking the detector size does not impact the signal level.  
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FIGURES 

	  

	  
Figure 1.  Time to slow down to 10 eV in GaAs versus initial electron energy Ei.   
	  
	  

	  
	  
	  
	  
	  
Figure 2.  Geometry for Monte Carlo calculations. 
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Figure 3.  Energy deposition per unit mass (dose) for 20 keV electrons in GaAs.  The 
color scale is logarithmic as indicated on the right side, with the values scaled to the 
maximum deposition of 1011 MeV/g.  
 

 
Figure 4.  Cumulative dose in the axial direction (z, red) and in radial direction (r, blue) 
for 20 keV electrons in GaAs.  The electrons are launched at r=0, z=0. 
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Figure 5.  Electron density contours at 1 ps for 20 keV initial electrons in GaAs.  Values 
are given relative to the peak value of 2.1x1016 cm-3.  
 

 
Figure 6. Characteristic lengths and peak electron density versus initial energy. The black 
circles indicate the distance containing ½ of the electrons behind the source (z<0), while 
the red circles give the distance containing ½ of the electrons ahead of the source (z>0). 
The blue circles gives the radius containing ½ of the electrons. The green circles show 
the maximum electron density on the right-hand scale.   
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Figure 7.  Electron generation rate electrons in GaAs. Initial energies range from 5 to 40 
keV as indicated.   
 

 
Figure 8.  Electron cascade time.  The Monte Carlo results for the time to create 90% of 
the total secondary electrons are shown by the black circles, connected by straight lines.  
The slowing-down time calculated from the stopping power (also shown in Figure 1) is 
given by the red curve. 

 0  50  100  150  200
 0

 20

 40

 60

 80

 100

 120

t (fs)

el
ec

tro
n 

ge
ne

ra
tio

n 
ra

te
 (f

s 
 )-1

5

10

20
30

40

 0 10   20  30   40
 0

 20

 40

 60

 80

 100

 120

E i  (keV)

t 90
 a

nd
 t

s (f
s)



6/7/13	  

	   16	  

	  
Figure	  A1.	  	  Interaction	  of	  the	  probe	  beam	  with	  phase	  objects	  created	  by	  the	  x-‐ray	  
beam.	  
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